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ABSTRACT

In this work a theoretical and experimental study of the heat transfer process in a radial

flow reactor was carried out under steady and non-steady conditions in order to determine

the effective thermal conductivity (ke). One of the mathematical model proposed was the

pseudo-homogeneous with effective thermal conductivity that varies with radial position.

The second model studied was the two phase model with different thermal conductivities

for gas and solid. For the pseudohomogeneous model, an analytical solution was obtained

using the method of separation of variables and series approximation. In the two-phase

model, the gas and solid temperature profiles were obtained by two numerical methods:

orthogonal collocation and Runge-Kutta. Several experiments were made by changing

particle diameter, gas flow and temperature input, reactor size and time-operation

condition: steady and non-steady. Theoretical results were compared with experimental

data in order to calculate the effective thermal conductivity. The values of ke agree in

general with the literature data. At low Reynolds numbers there is no appreciable

difference between a pseudohomogeneous model and a two phase equation model.

Constant thermal properties can be used at Re<5 with enough accuracy to predict the

thermal behavior of a radial-flow reactor.

KEY WORDS: Effective thermal conductivity; packed-bed; pseudohomogeneous model;

radial-flow; transient model; steady-state model.



1. INTRODUCTION

Radial-flow packed-bed reactors are used in certain processes where high space velocities

are required [1]. A complete study of the heat transfer through the packed bed of such

reactors is important for a better understanding and a more efficient design of these units.

It is necessary a precise knowledge of effective thermal properties (i. e. effective thermal

conductivity, ke) in order to perform a stability phenomena analysis in the case of fixed-

bed exothermal reactors.

Several authors have been working in this area. For example, Hlavácek and Votruba [2]

recommended the use of data measured in tubular reactors for radial flow adopting a

logarithmic average radius. Kunii and Smith, Swift, Kobayashi, Godbee and Ziegler,

Kuzay, Bauer and Schünder, Jaguaribe and Beasly, Nozad et al. [3, 4, 5, 6, 7, 8, 9, 10, 11]

recommended different methods for the evaluation of the stagnant effective thermal

conductivity (ke
0: effective thermal conductivity at zero velocity). Yagi et al., Kunii and

Smith, Votruba et al., Gunn and De Souza, and Dixon and Cresswell [12, 13, 14, 15, 16]

calculated the effective thermal conductivity in axial-flow packed-bed reactors using a

steady-state model. Additionally,  Juang and Weng, Levec and Carbonell, and Dixon and

Creswell [17, 18, 19] worked with axial-flow packed-bed reactors but at transient

conditions. Finally, Votruba and Hlavácek, Pulve et al., López de Ramos and Pironti and

Fuentes et al. [20, 21, 22, 23] studied the heat transfer process in radial-flow packed-bed

reactors using stationary (the first two) and transient models (the last two authors).

The objective of this work was to calculate the effective thermal conductivity using steady

state and transient models, considering that ke depends on  the radial position.



2. EXPERIMENTAL METHODS

The flow diagram of the equipment used (Fig. 1) consists of: a radial-flow reactor placed

inside a heat insulated cylinder; a set of valves controlling the cold and hot air entrances to

the reactor; an automatic data processing system connected to the reactor thermocouples

to register temperatures changes in the packed bed. The reactor (Fig. 2) is composed of

two coaxial cylinders of different diameter constructed of stainless steel sieves, fixed by

means of two discs with concentric grooves cut in them with dimensions corresponding to

the major and minor circumferences of the reactors cylinders. A distributing tube,

perforated with small, uniformly spread orifices is placed in the axis to ensure correct

radial flow of air through the packed bed. An electric tubular resistance is placed inside the

distributing tube if the reactor works under steady state conditions. Temperatures were

measured and registered in radial, angular and axial positions (16 ports in total). T-type

thermocouples (copper-constantant) are placed is a small guide tube, sealing the edge with

cement. The packing material used was non-reacting polymer and ceramic particles with

average diameters between 2x10-3 and 5x10-3 m. The maximum temperature of the warm

air was limited by the melting point of the polymer; the optimum operation range found

experimentally was 50 to 60°C. The cool air temperature was 23°C. The bed’s axial and

angular symmetry was verified for each experiment. In fact, temperatures varied, in the

worst case, by 1.5°C. In the transient case, the temperature of the air going into the

reactor was step-increased. In the steady state case, the tubular electric resistance is set on

using a Variac. The air flow range was from 6.23 to 9.91 m3/h.



3. MATHEMATICAL MODEL

3.1 Homogeneous model

Temperature variations inside the bed are analyzed using a pseudohomogeneous model

that does not make any distinction between solid and fluid temperature. A differential heat

balance for this model is expressed by an equation such as:
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where, ρCp  is the average heat capacity between solid and fluid, T is the temperature, t

the time, ρf  is the fluid density, Cp f  is the fluid heat capacity, u is the fluid superficial

velocity, r is the radial position, and k e is the effective thermal conductivity.

Yagi et al.[12] have found experimentally that the effective thermal conductivity for axial

flow in tubular reactors varies linearly with fluid velocity according with the following

expression:
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where, k f is the thermal conductivity of the fluid, k e
0  is the effective thermal conductivity

for a stagnant fluid, δ  is a correlation parameter, Prandtl number calculated as
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In equation (1) it is assumed that the effective thermal conductivity, ke, is a function of the

radial position through the fluid velocity as stated in equation (2), considering that in

radial flow reactors the continuity equation is given by:
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3.1.1 Steady State Case:

The differential equation for the steady state case is the Eq. (1) without the first term. The

boundary conditions applied to this problem were:
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where Pe* is a modified Peclet number given by: Pe
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3.1.2 Non-steady Case:

Equation (1) is the differential equation for the non-steady case. The initial and boundary

conditions applied were:
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The analytical solution of Eq. (1) with the initial and boundary conditions (6) is:
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The eigenvalues λi are calculated as the positive roots of the following equation:
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The constants C1i and C2i and Ci can be calculated using the following expressions:
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3.3 Two-Phase Model:

Temperature variations inside the bed can be analyzed using a two-phase model that

makes distinction between solid and fluid temperature. A differential heat balance for this

model is expressed by the equations:
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where kaf  is the axial fluid phase effective thermal conductivity, krs is the solid phase

effective thermal conductivity and h is the fluid-solid heat transfer coefficient.

The initial and boundary conditions for this model are:
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The correlation reported by Zehner and Schlünder [24] was used to calculate the solid

phase effective thermal conductivity, krs. This conductivity is assumed constant with

position:
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To calculate the fluid phase effective thermal conductivity, kaf, the correlation proposed by

Edwards and Richardson [25] was used. In this case, kaf is a function of the position

through the fluid velocity:
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The fluid-solid heat transfer coefficient, h, was calculated by Stuke’s correlation [26] that

assumed h as a function of the Reynolds number.

An analytical solution for this coupled system of nonlinear partial differential equations

may be difficult to find, so an orthogonal collocation method (with 11 collocation points)

was chosen combined with a Runge-Kutta method in order to obtain the corresponding

temperature profiles.



4. RESULTS AND DISCUSSION

Figure 3.a shows a typical temperature response for the non-steady case after the

temperature of the air was step-increased from T0=23°C to T1=66°C. The top line

corresponds to the gas entrance temperature, close to a perfect step temperature input.

Figure 3.b shows the temperature profiles corresponding to Fig. 3.a at different values of

time. Initially the bed responds slowly to the change of temperature and after three hours

the temperature inside the reactor was almost uniform and constant. For this reason, it was

necessary to introduce an electric heater inside the reactor to study its thermal behavior

under steady-state conditions.

Figure 4 shows three radial temperature profiles for the steady state case. The radial

reactor used has a R2/R1 ratio equal to 6, a particle diameter of 3.3 mm and a gas input

flow of 8.5, 13.8 and 16.3 m3/h.  The dotted lines represent the theoretical values obtained

using Eq. (4). The value of δ adjusted for all steady experiments was 5. An acceptable

agreement between experimental and theoretical values is observed. This behavior was

found in all the experiments performed at different operating conditions.

Figure 5 contains all the ke values calculated in this work for the steady state. For all the

steady state cases the value of δ that best fit the temperature profile is 5 (in the range of

Reynolds numbers studied). This value is one order of magnitude higher than the value

reported by Yagi et al. [12] for axial flow in tubular reactors. As it was expected the

variation of ke as a function of RePr was linear (Eq.(2)).

Figure 6 shows the Peclet number values as a function of the Reynolds number including

others experimental results previously reported, indicating good agreement. It can be



observed that non-steady experimental values are similar to those calculated under steady

state conditions. This behavior agrees with the result obtained by Dixon and Cresswell

[19]  for the axial flow reactors at small Reynolds numbers. Then the effective parameter

(ke) can be considered the same for steady state and transient models for the radial-flow

packed-bed reactors at Reynolds numbers less than 5.

Fig. 7  shows the temperature response (Fig. 7.a) and the temperature profile (Fig. 7.b) for

a reactor with a ratio R2/R1 equal to 6 for two different Reynolds numbers (Re=8 and

Re=400). The dimensionless temperatures were calculated using Eq. (6) and the numerical

solution of Eqs. (9 and 13). There is an acceptable concordance between the pseudo-

homogeneous and the two-phase models for low Reynolds number. The pseudo-

homogeneous temperature profile is located between the solutions for solid and gas phases

profiles. However, for high Reynolds number, a large difference is observed between the

corresponding profiles, indicating disagreement between the two models. A pseudo-

homogeneous equation can be used instead of the two-phase equations for low Reynolds

numbers but it is not recommended for high Reynolds.

Fig. 8 shows a case where the effective thermal conductivity can be approximated by a

constant along the reactor bed for radial flow. In this case the dimensionless temperature

is almost the same when δ goes from 0 to 0.75 for low modified Peclet number (around

4). Nevertheless, for a Pe* equal to 40 the difference between taking ke constant or

variable is more notorious. Then, it is possible to simplify the model to one with ke

constant at low Reynolds (Pe*) numbers and use the analytical solution found by López de

Ramos and Pironti [22].



5. CONCLUSIONS

For the pseudohomogeneous model, an analytical solution was obtained using the method

of separation of variables and a series approximation. In the two-phase model, the gas and

solid temperature profiles were obtained by two numerical methods: orthogonal

collocation and Runge-Kutta. Theoretical results were compared with experimental data in

order to calculate the effective thermal conductivity. The values of ke agree in general with

the literature data.

At low Reynolds numbers there is no appreciable difference between a

pseudohomogeneous model and a two phase equation model.  Constant thermal properties

can be used at Re<5 with enough accuracy to predict the thermal behavior of a radial-flow

reactor. Furthermore, there was no difference between steady state and transient methods

for experimental determination of the effective thermal conductivity at low Reynolds

numbers. At high Reynolds numbers it is recommendable to use a two-phase model with a

variable fluid-phase effective thermal conductivity.
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FIGURE CAPTIONS

Fig. 1: Experimental set-up [1,3: Gate valves; 2,5, 6, 8, 9, 10: Ball valves; 4: Rotameter;

7: Electrical heater system; 11: Reactor vessel; 12, 13: Drains; 14: Data acquisition

system; 15: Personal computer].

Fig. 2: Radial-flow packed-bed reactor.

Fig. 3. (a) Temperature response and  (b) radial temperature profile for the non-steady

case after a temperature air step from T0=23°c to T1=66°C. (Relation R2/R1 = 4, Particle

diameter = 4.2 mm, Gas input flow = 19.51 m3/h).

Fig. 4.  Radial temperature profile for the steady state case (Relation R2/R1 = 6, Particle

diameter = 3.3 mm, Gas input flow = 8.5, 13.8 and 16.3 m3/h).

Fig. 5. ke as a function of RePr using the steady state model.

Fig. 6. Pe as a function of Re for the steady state and transient models.

Fig. 7. (a) Temperature response and (b) temperature profile for Re = 50, R2/R1 = 6, and

particle diameter = 4.2 mm for a non-steady method.

Fig. 8. Influence of δ values in temperature responses.
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